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Abstract
Mobile ad-hoc networking (MANET) is a wireless technology to link autonomous,

mobile computers that are free to move randomly, organize themselves arbitrarily and leave or

enter the network on-the-fly.  Two areas of interest have been identified and studied: the effect

of environmental factors on MANET performance, and methods to improve performance by

faster identification of broken links.

In MANET, the physical channel is affected by environmental conditions such as sea

state and physical barriers that increase the frequency of link failures and degrade network

performance.  Link Layer Detection (LLD), a subroutine designed to identify broken node links,

can potentially improve a network’s performance, but the current standard does not utilize LLD.

This study examines, through computer simulations, the hypothesis that LLD will improve the

simulated overall network performance.  

In an analysis of over five thousand simulations, LLD was found to improve performance

in simulated environments approximating ideal propagation conditions.  However, simulated

environmental degrade decreased the performance advantages of using LLD.  A break point,

beyond which operation with LLD failed to yield superior performance, was identified.  Design

criteria for improved LLD methods, representing potential improvements in network routing

with particular application to military operations, are proposed. 
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1.  Introduction

A.  MANET

Mobile ad-hoc networking (MANET) is a wireless technology to link autonomous,

mobile computers that are free to move randomly, organize themselves arbitrarily and leave or

enter the network on-the-fly.  Stationary networks, both wired and wireless, assume that fixed

infrastructures (virtual or physical) are present and that routing paths rarely change.  MANET

must be designed with the assumption that the routing paths will frequently fail, requiring new

routes to be found.   Individual nodes, or computers, within a MANET are all peers and must act

as hosts, routers and access points.  Physical connectivity is provided by radio communications,

and the network protocols must be designed to maintain virtual connectivity between nodes

moving within the network [1,2].

MANET is a developing area of research that has recently attracted significant interest

from both commercial and military sources.  Commercial interest is fueled by the rapid increase

in the number of portable laptop computers and other computing devices such as personal

desktop assistants (PDAs).  MANET has the potential to connect all of these “personal-size”

accessories without any setup required by the users.  Bluetooth networks are an example of such

networking.  The Bluetooth network standard is designed so that an individual’s cell phone,

laptop, PDA or other portable communication device can communicate through wireless

“personal-area-networks” which are created and maintained on-the-fly [3].

The military has a clear interest in MANET because the course and outcome of modern

warfare is shaped by communications and the speed at which information is exchanged.  Modern

military strategic thinking is based on “tempo of war” strategies which suggest that victory on
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the battlefield is a result of collecting, processing and reacting to information faster than the

enemy.  MANET, by increasing the type, quantity and reliability of data that can be sent, may

speed the collection and processing of data, between and within units of all sizes.  MANET is

particularly well suited for military operations such as platoon infantry maneuvers and

amphibious operations.  During amphibious operations, such as Ship to Shore Objective

Maneuvers (STOM) [4] and Operational Maneuver from the Sea [5], the movement of Marines

from their host Navy ships in the Amphibious Ready Group (ARG) to the area of operations is

extremely critical to  mission accomplishment.  In such a tactical situation, battlefield dynamics

can necessitate that the Marines in the assaulting force rapidly adapt to their changing

environment.  The rapid and reliable dissemination of information is paramount because the

manner in which the Marines assault their initial objectives will often determine an operation’s

success.  

One of the key factors in MANET network design is the capability of a network to

maintain connectivity between mobile, individual nodes.  The independence and mobility of

nodes in a MANET means that no working connection between nodes can be assumed to be

permanently effective.  The MANET must be able to adapt by quickly incorporate alternative

routes to maintain virtual connectivity despite a changing physical structure of the network.  This

is a challenge unique to a MANET as opposed to a stationary infrastructure.  The military may

not be able to rely on central nodes because the network must be robust enough to deal with the

possibility of hard losses.  Having peer-to-peer connectivity ensure that the network is not

dependent on any single node.  

Military applications of MANET also demand that these networks operate effectively in
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degraded environments that impede the propagation of electromagnetic waves.  To overcome

these technical challenges, information about the status of neighboring nodes is maintained by

every individual node.  Several factors related to routing have a strong effect on a MANET’s

overall network performance: the speed of identifying failed links, and the speed at which new

routes are discovered and adopted.  Additionally, methods that minimize the false reports of link

errors will lower routing overhead, increasing the bandwidth available for the transmission of

data packets. 

B.  Network Design and Research

Network study and

design has traditionally been

based on the Open Systems

Interconnection (OSI) model that

divides the functions and

capabilities necessary for a

network to operate, placing them

into seven abstracted layers

which stack and interface

vertically.  These layers are:

physical layer, data link layer,

network layer, transport layer,

presentation layer, session layer, and application layer [6].  Diagram 1 is a graphical
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representation of this network model.  MANET and traditional wired networks contrast most at

the lower three layers.  Higher network layers deal more with end-to-end reliability, the

generation and type of data that is sent over the network, and the presentation of this data to the

final user.  While higher layers can be specifically designed for MANET, abstraction between

the layers will ideally make differences between MANET and wired networking invisible to

these higher layers.  

The physical layer of the network is the most basic level in which electromagnetic waves

that carry encoded data are sent, received and processed.  In the physical layer, wireless

networks, such as MANET, which maintain connectivity via wireless free-space propagation in

the environment, differ from wired networks in which copper wire, coaxial cable or fiber serve

as the channel through which data is transmitted.  The channels in a wired network tend to be

insulated from the environmental factors such as weather, while the channel of a wireless

network is the environment itself.

The data link layer ensures the individual bits sent by different nodes are correctly

transported across the physical layer connection.  This data link layer also detects errors that

occur in these transmissions and moderates the access to the physical medium.  These last two

functions are often separated from each other, and placed in two separate sub-layers:  the link

layer (LL) and the Media Access Control (MAC) layer.  In the OSI model, network layer

functions include: breaking large chunks of data into packets of information to be sent, ensuring

that packets of data are transported from the sending node to the receiving node, and routing.

Routing functions, particularly important to MANET because of the high frequency of new route

discovery requests relative to stationary networks, discover and store the path that is taken
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between the source node and the final destination node.

Most of the technical problems associated with MANET are associated with these three

lowest networking layers.  Much research into MANET to date has focused on two general

areas: (1) protocol design and methods for reliably carrying out and (2) confirming the multi-cast

transmission of data to more than one destination.  The difficult network layer issue common to

both of these fields of research is the routing of packets through a network where nodes have

unrestrained mobility and routes can be assumed to be only temporarily viable.  The need exists

for new protocols and architectures that are responsive to changes in the path between nodes and

capable of prioritizing packet transmission [7].  The internet engineering task force (IETF) [8]

has organized a working group to focus on MANET related issues, particularly the development

of routing protocols that seek to provide solutions to the difficult problem of reliably transmitting

information across a network of unknown structure.

Previous studies have developed and examined the performance of routing protocols in

different scenarios, varying the network makeup by changing the number of nodes, their

mobility, and the amount of data that is sent through the network [9]. In this study two areas of

interest were identified and examined:  

1. The potential effect of environmental factors on network performance

2. MAC layer mechanisms to more quickly identify broken links and then pass this

information to routing functions in the network layer.

The physical layer of the network is the environment in which electro-magnetic waves

propagate.  Clearly the quality of this channel in propagating waves will affect the overall quality

of the network, and in MANET this channel is affected by environmental conditions such as sea
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state, ambient noise, active jamming, and physical barriers (“clutter”) that cause scattering,

diffraction and fading.  The author of this study is unaware of any previous studies that examined

the effects of a degraded environment on network performance.  A degraded environment will

likely cause more frequent link failures which will have a detrimental effect on network

performance.  It was hypothesized that improved link error detection methods in the data link

layer can further improve the overall network performance.

In this study, the focus was a quantitative analysis of the simulated performance of

networks in scenarios modeling movement and environments that would be encountered during a

military operation, particularly the amphibious operation in which Marines assault a potentially

hostile beachhead from Navy ships.  Mobility scenarios modeling the movement during an

amphibious operation were designed and implemented.  The performance, evaluated in terms of

the data throughput, of a MANET functioning to connect the assaulting vehicles was simulated

while accounting, with mathematical models (described below), for the effects of environmental

conditions on radio propagation.  Based on these results, modifications to the MAC layer’s

methods for detecting link errors were proposed.  The proposed methods and strategies represent

a potential improvement in network routing with particular application to military operations.

More robust and effective communications will directly translate into the increased effectiveness

of assault forces.

C.  Radio Propagation Models- Log Normal Shadowing

Several models, ranging in complexity based on the number of considered physical and

environment factors, mathematically predict the propagation of electromagnetic waves in a free



11

PL d dBm PL d d
d

X

d dBm P dBm PL d dBmt

( )[ ] ( ) log( )

P ( )[ ] [ ] ( )[ ]r

= + +

= −

0
0

10β σ

space.  The log-normal shadowing propagation model for attenuation in a wireless medium

provides a means to simulate radio transmissions in noisy and cluttered environments [10].  In

this propagation model, equations 1 and 2 below, it is assumed that the environmental

interference can be represented in terms of two variables, $ and F.

Where PL(d)[dBm] is the path loss in dB received at a distance d.  Do is a reference distance and

PL(do) is the known path loss at a specific distance.  The received power, Pr, is related to Pt, the

transmitted power and the path loss. The path loss exponent, $, is given for an environment, and

describes the rate at which the signal attenuates with distance.  The stochastic noise and

interference in the environment is represented by XF, the absolute value of a normal distribution

function centered at 0 with a standard deviation of F.

 The variables, $ and F, can theoretically represent any environment.  $, the exponential

path loss constant, is primarily caused by multi-path fading, diffraction and other physical

limitations imposed by the environment.  The stochastic element caused by noise and other

random interference is represented by a Gaussian distribution function that is added to the path

loss. For example, ideal free-space propagation is described by $ =2 and F=0.  In this situation,

the above equations reduce to simplified free-space, spherical propagation of an electromagnetic

wave.  Table 1 shows a variety of environments along with the $ and F values associated with

them [11].



12

In this study, the design emphasis for the

methodology was fidelity in modeling the

environment of an amphibious operation.  In the

littoral environment during a military operation,

sea state and active jamming are the most likely

detriments to performance.  These factors can

reasonably be modeled by understanding that they

affect the rate of attenuation of a signal ($) and the noise that may interfere with the receipt of a

signal (F).  For this study, the log normal shadowing model was assumed to model the network’s

physical layer propagation of radio signals.   
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2.  Routing and Link Layer Detection

Routing protocols are methods, implemented in software, that are used to determine how

packets of information will be transported through a network.  These methods are designed to

maintain the ability of any node in the network to communicate with any other node regardless of

whether or not its radio transmissions can be directly received.  In the current study, it was shown

that the protocol designs and route discovery methods used by a network will affect that

network’s overall performance as compared to the same network running different routing

protocols or route discovery methods.  Routing protocols generate overhead which consumes part

of the bandwidth that is available for data packets.  Poor or sub-optimized designs can contribute

to delays if the network reaction is slow to fix link failures.

MANET routing protocols may be classified as reactive or proactive based upon when

they determine the route by which a data packet will reach the destination node.  Proactive

protocols use periodic updates to ensure nodes are aware of neighboring nodes and have up-to-

date routing information.  The cost of proactive routing is increased overhead caused by periodic

updates.  Destination Sequence Distance Vectoring (DSDV) [12] is an example of a proactive

routing protocol that is based on the traditional Bellman-Ford distance vectoring approach to

determining routes between nodes.  Conversely, reactive protocols find routes to destination

nodes only when a node attempts to send data to a node for which there is no known viable route.

Two examples of reactive routing protocols are Ad Hoc on Demand Distance Vector (AODV)

[13] and Dynamic Source Routing (DSR) [14].  DSR is reactive routing protocol utilizing source

routing.  In source routing the initiating node determines the entire path to the destination node

and forwarding nodes need only maintain information about their neighboring nodes. 
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Past MANET studies have compared the advantages of different routing protocols in

scenarios with different mobility for individual nodes.  Results suggested that different protocol

designs are each better suited for a specific type of MANET mobility scenario.  When comparing

DSR and AODV, Perkins [9] found that in high mobility scenarios, networks using AODV

performed better than networks using DSR.  In such high mobility scenarios, AODV was more

effective at handling both the frequent link errors and the additional variability of the nodes in the

network.  However, in scenarios with less mobility in the nodes, DSR performed better than

AODV.  While both DSR and AODV are reactive routing protocols, their methods of discovering

and storing routes differ.  DSR uses source routing which maintains multiple routes to the same

destination, while AODV maintains only one routing path at a time.  In low mobility scenarios,

the few link errors that exist are handled faster by DSR because multiple routes to the same

destination are cached and often no new route discovery is necessary.  Conversely, in high

mobility scenarios, the probability that several or all of the routes cached in DSR are ineffective is

high.  In these high mobility scenarios, AODV’s more frequent updates to the routing path yield

superior performance.

The current work examines Link Layer Detection (LLD), mechanisms in the Data Link

Layer designed to detect link errors and interface with the routing layer to pass on information

about broken links.  The use of LLD is advantageous because it frees the routing protocol from

using alternative methods to replicate this function.  The alternative to using MAC layer feedback

in the form of LLD is the use of neighbor discovery methods by the routing protocol.  Neighbor

discovery mechanisms are procedures through which the routing protocol queries and receives

responses from the surrounding nodes that it can communicate with directly.  These methods are
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discussed in the following section.  Since the routing layer is further removed from the physical

layer than is the data link layer, neighbor discovery methods in the routing layer must be more

proactive than LLD methods and generally require more overhead which decreases the available

bandwidth.  However in AODV, the current default standard is to operate without LLD, using

HELLO messages instead. Throughout the rest of this paper, any reference to the use of HELLO

messages by a network is considered synonymous with not using LLD, and vice versa.  

A.  Neighbor Discovery Methods

Without LLD information from the MAC layer, AODV incorporates uses a neighbor

discovery method that consists of sending “HELLO” messages on a regular basis.  These HELLO

messages both announce the presence of the sending node and act as requests by the sending node

for information from any nodes that have recently become neighbors.  In contrast, the lack of

response from a previously neighboring node is an indication that the link between these two

nodes has become dysfunctional.  HELLO messages are sent out at a specified interval (the

default interval is one second) unless a node has received broadcast packets within this time-

period.  The HELLO message contains the node’s address and sequence number which

neighboring nodes use to update their own routing information.  

By using HELLO messages, each node is forced to send out at least one message during

each HELLO message interval.  The absence of any communications from a neighbor is

interpreted as a failed connection between the two nodes causing AODV to react by removing

from its routing table any routes that had included this now-broken link between nodes.  
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B.  Link Layer Detection Methods

The IEEE 802.11 MAC layer specifications, for wireless ad-hoc networks, include a

method for the identification of failed links which is based on a time-out system.  Whenever the

MAC layer passes information to the physical layer to be sent out to another node, the expectation

is that the receipt of this data will be confirmed by the receiving node.  If a data packet is sent by

the MAC layer, an acknowledgment (ACK) packet is expected.  When a Request-To-Send (RTS)

message (a packet sent to determine if the channel to that node is clear to send information) is

sent, a Clear-To-Send (CTS) message is expected in response.

When the MAC layer begins the transmission of a packet (data or RTS), a copy of the

packet being sent is stored in a buffer, and a timer is started to measure the time elapsed since the

packet has been sent.  Individual packets are identified by a Packet ID number that is unique to

each new packet sent.  This packet ID number is incremented based on when the packet was

sent.  In addition to retrieving the appropriate value, this ID helps to place the packets in the

correct order for processing.  In noisy or congested environments, it is likely that packets will

not arrive at their destination in the order in which they were sent.  

If the MAC layer receives no response (neither ACK nor CTS packets) within the time

period of the timer, a retransmission of the same packet will be attempted.  The MAC layer will

make several retransmission attempts to send the data before declaring that the link between

these two nodes is broken and no longer effective.  This number of retransmission attempts is

known as the LLD ‘threshold value.’  The default threshold value for RTS packets is seven (7),

meaning that six unacknowledged RTS packets will be sent before a link is declared bad and an

error message broadcast.  Similarly, the threshold value for data packets is four (4).  [11]
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In this study, modifications to the routing and MAC layers included turning LLD on or

off, and modifying the threshold values for the number of attempted RTS packets that can be

sent unacknowledged before a link is determined to be in error.
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3.  Materials and Methods

This study focused on network designs that were optimized for use in an amphibious

operation during STOM.  In such an operation, Amphibious Assault Vehicles (AAVs), Landing

Craft Air Cushions (LCACs) and other types of troop and equipment carriers will move marines

and their supplies from ships to a potentially hostile objective beachhead.  Based on the tactical

methods used by the Navy and Marine Corps for the employment of amphibious landing craft

during STOM, scenarios of node mobility for testing MANET performance were designed. The

littoral environment is likely to include noise and other factors that will degrade the signal

strength of radio waves, potentially inhibiting communications.  The scenarios used in the testing

for this study simulated these degraded environments with the log normal shadowing model

(discussed previously in section 2.C).  This model added stochastic variation and additional

attenuation to propagation of radio signals.

A.  Simulation Tools

Testing of the network performance was performed with the Network Simulator, version

1b9 (NS2) [11], a detailed computer simulation of the network model.  NS2 is open-source

software, written in C++, that simulates every layer in a communications network.   The

interface with the NS2 executable is through script files written in the Tool Command Language

(TCL).  These scripts define such variables in a network simulation as the specific movement

patterns of the nodes in the scenario, the input data rate, and the simulated propagation

conditions.  Of particular utility to this study is the fact that NS2 is available open source,

making it both free and providing access to the source code.  Modifications to the source code
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were used in this study to implement and study, in NS2, new methods and non-standard

specifications for routing, LLD and other network functions.  The testing in this study included

simulations using both existing routing protocols and MAC layer specifications, as well as

simulating the results obtained from modifications to the MAC and router layers. 

NS2 simulates transmission of data packets at the physical layer by modeling the

attenuation and path loss of a propagating radio wave for each packet.  The propagation of these

signals is based on mathematical models that can be configured to take into account attenuation

and stochastic variation.  To the knowledge of the author, research to date has not examined the

effects of different environmental conditions on any aspects of network performance.  An

important goal of military communications is ensuring that communications are robust regardless

of external factors such as the environment.  The log-normal shadowing propagation model was

selected to simulate a variety of degraded environments.

NS2 reports the results of simulation tests in trace files which simply record every action

that occurs in the network.  Options exist to exclude or include information on the network

activity at the MAC, routing and agent layers of the network.  These options also significantly

influence the run time for individual simulations. In this study, whenever possible, unnecessary

tracing was turned off to save time and disk space.  Large trace files can be analyzed by

programs that parse strings, analyzing one line of the trace file at a time and determining

(through IF statements) what network actions caused this statement.   
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B.  Scenario 

During amphibious operations, many different factors will influence the particular

manner in which amphibious craft proceed from the ship to the beachhead objective.  The

number of craft used and the method by which they approach the shore will be determined by the

type of mission that they are going to accomplish which can vary from a hostile amphibious

assault to troop transport directed towards an already secured beachhead.  However, a typical

operation is usually based on the employment of a forward deployed Marine Expeditionary Unit

(MEU).  The MEU is built around a Marine infantry battalion, which can support up to fifteen

AAV’s in a single operation.  Being forward deployed, these units are the most likely to be

present and used during an amphibious operation.  The amphibious assault craft will typically

travel from the amphibious ready group, likely located beyond-the-horizon at about 30 NM away

from the shore, and travel at speeds of 10 - 40 knots (approximately 5 - 20m/s).  During seaborne

maneuvers, ships and landing craft will “stay on station,” keeping a set formation so that relative

motion between the craft is minimal while they travel together towards a destination.  While

ideally the craft will stay on station during the entire transit, it is likely that for any variety of

reasons, from mine avoidance to a changing objective, craft within the formation will have to

adjust their position within the formation.  

The tactical doctrine described above is used by the US Navy and Marine Corps to

conduct amphibious operations, and is the basis for the scenarios we designed for use in this

study.  The wireless networking scenario used in this study consisted (see figure 1) of ten nodes,

two of which are the source and destination for the data transmission in the network.  A

connection was created between these two mobile nodes, n0 and n1.  Both the Transmission
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Control Protocol (TCP) and User Datagram Protocol (UDP) connections were tested.  The traffic

sources that were used simulated either File Transfer Protocol (FTP) or Constant Bit Rate (CBR)

agents as appropriate to the connection.  See Appendix A for the source code used to implement

this scenario in an NS2 simulation.  

Although both TCP and UDP connections were originally tested, the emphasis during the

analysis was on UDP because of its simplicity.  While TCP is the standard for transfer of data in

the internet and in wired networks, it optimizes performance based on the assumption that

network congestion is the primary problem in causing network delay and unacknowledged

packets.  TCP reduces network’s input data rate to control congestion and optimize network

performance.  It also requires the network to become congested before it attempts to fix the

problem.  Using the more simplistic UDP methods removes confounding variables that are

introduced by TCP’s flow control methods.  While optimized for wired internet connections, the

flow control methods in TCP have been shown (Gunes, et al) to be detrimental to the

performance of a MANET [15].  Gunes found that the congestion assumption used in TCP’s

design, that errors are caused by network congestion, was invalid for MANETs in where errors

are more likely caused by failed links and absent routes.  TCP’s flow control methods which

lower the input data rate only exacerbate network problems and often bring the MANET to a



22

total standstill.

In the chosen scenario, nodes n0 and n1 begin transmitting via a direct connection, but

with time they move farther apart.  The scenario is designed to simulate a formation of

amphibious craft moving towards the objective as two additional ships move to be “on station.”

This scenario also ensures that the physical link originally existing between n0 and n1 will

eventually fail, forcing the MAC layer to detect an error in the link and the routing protocol to

discover a new route.  The other nodes (n2 - n9) in the scenario do not originate data

transmission, act as the destination of data or move in the scenario.  However, even though these

nodes are not the source of any information, because of the nature of MANET routing protocols,

they are active performing functions relevant to the routing protocol:  relaying broadcast

ERROR messages, broadcasting HELLO messages, responding to requests for routes, and

forwarding packets by acting as intermediary nodes in a multi-hop routing path.

The choice and relative simplicity in the scenario used for simulation compared to that of

previous research in the field warrants a discussion.  First, this network scenario was designed

specifically around likely and actual scenarios that would be encountered during an amphibious

operation.  Additionally, one of the primary areas of interest in this study was examining the

methods used by the MAC layer to detect links that break when within a network.  This scenario

realistically modeled the transit of amphibious craft moving into station as they transit from ship

to beachhead objective, and it also ensured that link error and neighbor discover functions of the

network operated with minimal influence from complex mobility in the scenario.  

One goal of this study was to understand the effects of environmental factors and the

differing effects on the performance of our modifications in the MAC layer.  The simplified



23

scenario is useful for this purpose.  Previous research in this field has tested network

performance by varying a network topology consisting of fifty or more nodes, all moving

randomly and potentially sending or receiving data simultaneously.  Past research clearly shows

that these factors significantly influence network performance.  Thus to minimize the influence

of variables whose influence on the results is not fully known, it was decided to simplify the

initial scenarios used in this study as much as possible so that the effects caused by

environmental factors could be isolated. 

C.  Variables Studied and Tests Run

In this study, two objectives were identified: 1) to examine and quantify the effects of

simulated degraded environments and to determine what other factors might mitigate this

negative relationship.  2)  to identify modified LLD methods that will improve network

performance.  To achieve these goals, the tests that were run in simulation varied the following:

• $, exponential path loss: 2.0-3.0 (in this scenario, the network cannot function

with values greater than 3.0)

• F, standard deviations of the stochastic environmental element:  0-20 dB (the end

value is when the network stops functioning, this point is affected by the $ value)

• Velocity of n0 and n1: 5m/s, 10m/s and 20 m/s

•  Routing and MAC layers:  AODV is used with LLD and without LLD.

• LLD Threshold Values:  Variations in the threshold values (default 7) of allowed

unacknowledged packets (threshold values of 3, 7, 8, 11, 15 and 25 were

compared).
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• Data Rate and Transmission Protocol: CBR Data Rates varied between 100kbps,

500kbps and 1Mbps.  Some TCP connected networks were also simulated

The length of the simulation is dependent on velocity of n0 and n1, the simulation lasts

until n0 and n1 reach their final destination (simulation time length × v =500 mAs, 25sec for

v=20m/s,  50sec for v=10m/s, 100sec for v=5m/s).  In the course of this study, over five

thousand different network scenarios from the parameter space of the above variables were

simulated and analyzed.

The values that were chosen for velocity, $ and F correspond to reasonable values,

expected during an amphibious operation. The range of speeds of 5-20m/s corresponds to speeds

of approximately 10-40 knots, which are the speeds that would be expected during such an

operation.  For the environmental factors, Table 1 (in section 1-C) shows that the range of values

chosen for $ and F represent reasonable values.  The types of environments simulated range

from outdoor operations in no clutter to moderately cluttered terrain, and outdoor environments

in which random factors, in this case weather and sea state, are included.

Tests in this study were simulated in groups based on a common network scenario that

varied only with respect to the characteristics of the simulated environment.  Given the common

scenario, simulations were run while varying the values for the environmental conditions.

Running tests in this fashion made the effects of simulated environmental degradation on a

specific scenarios readily observable, achieving the first aim of this study.  The results from a

group of simulations can be represented on a 2-D graph with multiple series or a 3-D contour

graph.  This testing procedure was then repeated around different scenarios, forming different

groups of results for analysis and comparison.  
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D.  Automated Simulation Software

During this study, every simulation in NS2 required either new source code for the

scenario to be simulated or a recompilation of the NS2 simulator.  New source code was required

for scenarios in which only the network structure, mobility or environment changed.  Of the

variables used in this study to modify these factors, four were varied for the scenario source

code:  node velocity, $ and F values, and input data rate.  For every scenario to be simulated, a

new scenario file was written for NS2 to input.  NS2 reads a file that specifies these (and other)

criteria and runs a simulation based on this input.  While the majority of the source code does not

change significantly between these simulations, a different file must be written for each new

simulation.  For changes involving the actual implementation of the network protocols, a full

recompilation of NS2 is required.  In this study, recompilation of NS2 was required before

conducting simulations in which the routing protocol or MAC layer were modified.

The testing of the over five-thousand separately simulated scenarios in this study was

significantly eased by the development of a program to partially automate data collection and

analysis.  While attempting to automate the testing requiring NS2 source code modification and a

recompilation of the executable, it was possible to automate the generation of individual

scenarios.  Further, using batch files, it was possible to automate the simulation and analysis of

the scenarios.  See Appendix D for selected source code from this program, Shadows.exe.

Shadows produces three outputs, two batch files and a series of scenario definition files ready for

simulation in NS2.

Written in visual C++, Shadows was designed for a Windows environment and uses a

Graphical User Interface to allow the user to specify either a value or a range of values for five
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different variables modified in the testing for this study.  These variables are $, F, input data rate,

packet size, and node velocity.  A separate scenario definition file is then created for every

combination of these variables.  The names of the scenario file, and the specific name of the

trace-file that will result are specified by the values of the variables used in this scenario.  The

two batch files that are also created: first, pre_process.bat, runs NS2 simulations on all of the

scenario files produced.  Second, post_process.bat, runs the data analysis program on all of

the trace-files that will be produced. 

See Appendix E for the nomenclature of the simulation definition and trace files, and

example lines from the batch files produced by Shadows. 

E. Techniques for Simulation Analysis and Criterion for Optimization

The raw results of the network performance of scenarios simulated in NS2 are large trace

files which record the activity of the simulated network.  Each action taken in the network causes

a new line to be written in the trace file.  By changing variables defined in the scenario definition

file, NS2 will write to the trace file information from any or all of the MAC, routing and/or

Agent layers.  Each line in the trace file includes information specifying exactly what happened

during an action taken by the network by writing the following information: time elapsed since

the beginning of the scenario, specific details about the type and size of the packet being sent,

what happened (sent, received, forwarded, or dropped packet), what layer is currently involved

in this action, the nodes between which this activity occurred, the source and destination nodes

of the overall routing path, and various other flags and addresses used by the MAC and routing

layers.  The analysis of the trace files was complicated somewhat by the fact that NS2 has
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several different formats for trace files.  As NS2 has been updated and new versions have been

released, the trace file format for wireless networks has changed significantly.  These changes

required the use of different analysis programs for each type of trace file.  

In the simulations run during this study, a typical trace file, which used MAC, routing

and agent traces, would be between five and eight Mb in size.  The sheer quantity of data within

each individual trace file is far too much for this study involving the simulation of over five

thousand individual scenarios in this study’s parameter space.

The criterion chosen to evaluate the network performance was the network’s throughput,

defined as the average data rate received by the destination node over the course of the

simulation.  Data was also recorded on routing overhead, good-put (the ratio of received packets

to sent packets) and the ratio of received data packets to dropped data packets.  Initial results led

to the conclusion that good-put and the ratio of received to dropped packets were both correlated

to the throughput.  The routing overhead was too sensitive to the variables being studied to be a

reliable evaluation criterion.  Thus, the criterion for comparison and optimization in this study

was the average data throughput of the network over the course of the simulation.  An added

advantage of using this criterion was that it reduced the need for MAC and Routing layer traces,

saving disk space, speeding the simulation of individual scenarios and speeding the analysis of

the resulting trace files.  

To analyze the trace files created by NS2, two programs were used.  One program

TCPdump Rate Plot Real-time (TRPR) [16] was written at Naval Research Laboratory (NRL)

and outputs the average data rate in specific time intervals.  This output can be graphed to

observe an “instantaneous data rate” vs time for a given simulation.  These results are useful for
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identifying where link errors occurred and how long the network was stopped from functioning

properly before a new route was discovered.  However, this analysis was, for the most part, far

too detailed for the aims of this study.

Analysis of the trace files was done primarily through a program written in AWK [17],

an interpreter language specifically designed for analyzing strings and text files. See Appendix B

for the source code for this data analysis program.  AWK programs work by reading one line of

text at a time and then using string matching commands to parse through the line.  The program

written for trace file analysis parsed the trace files line by line, with each line corresponding to

one specific event or action that occurred in the network.  Based on the trace file format, the

analysis program attempts to use string comparisons and IF statements to identify the type of

event that occurred.  However, the program is only capable of identifying specific types of

events.  The program then maintains a running total of the number of each event that occurred

and outputs this value to the console stream at the conclusion of the program.  The types of

events that can be identified and are tallied are: total packets sent, data packets sent, routing

packets, ACK packets sent, request packets sent, total packets dropped, routing packets dropped,

data packets dropped, hello packets sent and total error messages broadcast during the

simulation.

During this study, analysis of the trace files was completed as follows: the trace files

were analyzed with the AWK trace file analysis program (see Appendix B) either individually

from the console prompt or using the second batch file produced in the Shadows program.  The

output from this trace file analysis program was piped into a text file using the console command

prompt.  This text file consists of several numbers, delimited by tabs, which represent the total
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number of each event that was counted in the trace file.  This text file was copied into a

spreadsheet program where the raw data, in the form of the number of each type of event that

occurred (dropped packet, sent packet, etc), combined with information on the packet size and

the time duration of the scenario, was converted into a data throughput value.  Data throughput

had previously been identified as the evaluation criterion to be used to quantify network

performance in this study.
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4.  Results

This study had two specific aims: First, to examine, analyze and quantitatively describe

the effects of simulated degraded environments on network performance. Second, to identify

LLD methods and evaluate the relative performance of the networks in which they are

implemented.  Analysis of the trace files produced from the simulations studied in this study

demonstrate that for most simulated scenarios, the implementation of LLD in a network

meaningfully improves the data throughput of the network.  Furthermore, networks using a non-

standard implementation of LLD, an implementation using a threshold value of roughly double

the default value, produced superior network performance in the majority of the scenarios tested.

Testing also demonstrated, however, that the best network design for a given scenario is not a set

standard, but a function of several factors, including environmental conditions.  

Results from this study can be organized into three categories: (1) qualitative and

quantitative descriptions of the relationship between simulated environmental degradation on the

network and identification of factors that influence this relationship, (2) the relative network

performance compared between networks implemented with and without LLD, and identification

of how this relationship is affected by other factors, and (3) comparison between the relative

performance of alternate LLD implementations.

A.  Simulated Environmental Degradation on Network Performance

In general, simulated degrade in the environment markedly decreased the network's

performance.  This result is consistent with expectations, and can be clearly seen from many of

the figures presented in this results section.  Figures 2, 3 and 4 clearly show this trend of a
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substantial decreased performance with increasing simulated environmental degradation.  These

figures are three-dimensional contour graphs that display the performance of a network in a

grouping of different scenarios.  Each graph represents a single network design that is evaluated

by simulation in a variety of environments modeled by varying the $ and F values over the

specified parameter space.  Figures 2 and 3 share the same network mobility in terms of the node

velocity and input data rate, they differ only in the use of LLD by the simulated network.  Figure

2 implemented standard HELLO Messaging (not using LLD), while the scenario for figure 3

implemented LLD (with the default Threshold value of 7).
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In figures 2 and 3, note the marked decrease in the network performance as the

environmental conditions become more degraded.  An ideal environment is modeled by a $

value of 2.0 and a F of 0, representing standard 1/R2 attenuation with no additional noise added

to the path loss.  The network data throughput steadily declines with respect to an increasing $ in

the simulated environment.  The same results held for tests in which $ was held constant and F

values were decreased.

The results from the scenario represented in Figure 4 differ from the previous scenarios

in both the velocity of the nodes and increased data rate.  In this graph, the same trend of

increasing noise decreasing network performance is clearly observed, but the specific

characteristics of this trend differ because of the other variables that were varied.  In this

scenario, the higher velocity increased the randomness of the resulting performance.  The results

from a single test run of these simulations is not as smooth as the results from a lower network

velocity.  The results from individual runs include more random variation.  However, when

averaged over multiple test runs, the results follow the same trend that was observed from results

with lower node velocities.

Figures 2, 3 and 4, were analyzed by examining the average rate of decrease in

performance with respect to added noise in the environment in both low and high noise

scenarios.  This analysis reveals that networks are, on average, more sensitive to added noise in

the environment in low noise scenarios (where F is between 0 and 10 dB) relative to than in high

noise scenarios (where F is between 11 and 20 dB).  This data suggests that the network is more

sensitive to added stochastic noise when $ values are lower, however a more inclusive

examination of the data suggests that many factors other than $ values influence the sensitivity
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of the network’s performance to added noise.  Figure 5 graphically represents these sensitivity

results that are mentioned above.  Note that these results are for a specific scenario in which the

input data rate=500 kbps.  The rate of decline in network performance is graphed versus the $

values for two different series, low noise and high noise.  The low noise series is the average rate

of decline in network performance for the range of F=0-10 dB.  The high noise series is the

average rate of the decline in network performance over the high noise range of F=11-20 dB.

Clearly, the sensitivity of network performance to added noise to the environment is related to

the current environment and network factors such as LLD implementation, data input rate and

node velocity.
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In comparisons between TCP and UDP testing, TCP tests were more sensitive to

environmental degradation than UDP tests, a result that is consistent with previous studies on

TCP performance with MANET [15].

B.  Performance of AODV with and without LLD

Testing that compared the results between network performance with and without LLD

yielded data that supported two main results: (1) measurement of the improvement in network

performance by networks using LLD relative to those using HELLO messaging and (2) the

effect of LLD on a network’s sensitivity to increased noise in the environment. 

In both CBR and TCP testing, the use of LLD improves performance relative to networks

using HELLO messaging in nearly every scenario.  Several variations in the implementation of

LLD were tested in this study, but for the majority of cases, the implementation of LLD using a

threshold value of fifteen (15) produced the best results.  However, in both very degraded

environments and close to ideal environments, this implementation of LLD is not optimal.  A

discussion of the differences between LLD methods is located below in the next section of

results.

 In general, a version of LLD is superior for ideal to moderately degraded environments,

while HELLO messaging improves performance in heavily degraded environments.  Table 2

shows the relative comparison between networks using a TCP connection and implementing

LLD or HELLO messaging.  Percentage increase represents the increase in throughput, given

previously in absolute terms of kbps, as a percentage increase relative to the throughput of the

method with poorer performance.  Clearly, in scenarios with lower values of F, networks
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v=10, Improvement found by using HELLO Messaging
Beta Range of Xσ Improvement (kb/s) Improvement (%)
2.0 4.5-21 43.17 29.3
2.1 6-18 29.54 27.7
2.2 3-12 18.55 17.0
2.3 5-12 15.95 19.9
2.4 3-9 10.57 23.9

v=10, Improvement found by using HELLO Messaging
Beta Range of Xσ Improvement (kb/s) Improvement (%)

2 0-4 18.18 25.43716484
2.1 0-4.5 55.70 31.47113945
2.2 0-2 11.00 4.981132075
2.3 0-4 3.63 16.24441133
2.4 0-2 10.50 30

v=20, Improvements found by using LLD
Beta Range of Xσ Improvement (kbps) Improvement (%)
2.0 0-4 33.00 16.3
2.1 0-4 47.00 24.2
2.2 0-4 40.60 29.7
2.3 0-3 38.80 34.8
2.4 0-4 29.20 38.5

v=20, Improvements found by using HELLO Messaging
Beta Range of Xσ Improvement (kb/s) Improvement (%)
2.0 5-19 48.58 31.8
2.1 5-16 40.68 33.8
2.2 5-14 20.02 22.0
2.3 4-10 18.85 24.9
2.4 5-9 9.41 19.2
2.5 3-7 13.93 34.2

implementing LLD yield superior network

performance, but scenarios with higher F

values have better network performance

with HELLO messaging.  These general

results hold regardless of the velocity at

which the nodes in the network are

traveling or whether the network uses

TCP or UDP connections.  However, in

CBR testing, the ranges for which

HELLO messaging yields superior

performance are smaller than the ranges

using TCP connections. Table 3 shows the

relative improvements that were found in

using types of LLD in networks over specific simulated environments.  Note the smaller (or non-

existent) ranges for which HELLO messaging is superior.  Using the proper type of network

implementation improved data throughput by between 40% -180%, from the default network

routing protocol implementation, which is HELLO messaging, depending on specific

environmental conditions. While in simulated environments with low dB of stochastic

variation, HELLO messaging produces worse performance than networks with LLD, HELLO

messaging appears to be less sensitive to the increase in noise to the environment.  As the

amount of noise in the path loss model increases, a cross-over point is reached after which the

use of LLD no longer offers superior performance.  Figure 6 clearly identifies this “break point”
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Comparison of average percentage improvement between LLD Thresholds
Beta Std Deviation Comparison of LLD Threshold=15 vs default LLD
2.00 3-10 7.28
2.10 2-10 18.54
2.20 3-10 20.41
2.30 4-10 24.13
2.40 1-10 21.77
2.50 1-10 33.96

Beta Std Deviation Comparison of Defulat LLD vs. HELLO Messages
2.00 0-10 40.45
2.10 0-10 45.99
2.20 0-7 67.91
2.30 0-8 99.67
2.40 0-8 108.99
2.50 0-6 153.69

Beta Std Deviation Comparison of LLD Threshold=15 vs HELLO Messages
2.00 0-10 45.51
2.10 0-10 60.13
2.20 0-10 81.68
2.30 0-9 115.94
2.40 0-8 132.80
2.50 0-9 189.75

Comparison of Protocols:
Data Rate vs Noise
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Figure 6 (using TCP):  The above graph clearly demonstrates 
the relative sensitivity to increased σ values.  The position of 
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Comparison on effect of Beta and Threshold Value's effect
on the Rate of Decline in Network Performance (kbps/dB noise)

Beta NO LLD 3.00 7.00 8.00 11.00 15.00 25.00
2.00 0.49 5.37 3.41 3.41 3.01 2.89 0.06
2.10 0.43 7.79 5.64 5.82 7.33 4.79 0.13
2.20 0.38 8.09 7.84 7.84 7.33 6.46 0.63
2.30 0.49 9.04 8.61 8.75 8.50 7.58 0.60
2.40 1.76 9.00 8.46 8.92 8.89 8.10 2.28
2.50 0.33 7.40 8.44 8.57 8.36 8.12 0.52

for a particular network scenario simulated over a grouping of environmental scenarios.

Similarly, this break point was identified for every network scenario simulated in this study.  

Figure 6 also clearly shows the relative sensitivity to increased environmental noise

demonstrated by networks using LLD instead of HELLO messaging.  While HELLO messaging

yields poor network performance relative to LLD for un-degraded to moderately degraded

environments, networks using HELLO messaging are less sensitive to added environmental

noise.  Thus as the simulated environment becomes more degraded, the relative advantage found

in using LLD decreases until HELLO messaging yields superior performance.  Table 4 compares

the relative decrease in network performance (per added dB of random noise) between HELLO

messaging and different LLD methods.  HELLO messaging has a much lower sensitivity to

increased noise relative to

all but one of the LLD

methods.  The similarity

between the LLD with

Threshold of 25 and

HELLO messaging is

addressed below.

C.  LLD Threshold Improvements

The implementation of LLD in the 802.11 specification sets a threshold value for the

number of unacknowledged allowed before the MAC layer will declare a link bad and broadcast

an ERROR message.  The default threshold value is placed at seven (7) unacknowledged
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Note that as these relatively low data rates, the network performance is less sensitive to simulated 
environmental degredation.  Note the poor performance of LLD with Threshold=3.
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packets.  Results from this study demonstrated that while the default setting produced superior

results in simulated ideal environments, alternative methods of LLD produced better results for

all other environmental scenarios.  For the majority of simulated environments (more than 70%

of the scenarios tested), performance was obtained when implementing LLD with a threshold

value of fifteen (15) vice seven (7).  Data throughput improved between 7% -150%, on average,

depending on the specific environmental conditions in which the testing was evaluated.  Table 3

lists these results, and Appendix F includes a more complete listing of all of the results. 

Figures 7, 8, and 9 are 3-D contour maps that compare the network performance of

different implementations of LLD across a grouping of different environmental conditions.

These figures differ only in the $ values that characterize the simulated network.  Several results

that were previously noted are observable from these graphs.  First, the trend for decreased
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Compare this figure with the two previous and future figures.  As Beta values increase, the detrimental 
effects of adding noise becomes more pronounced.
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method over others

90-100
80-90
70-80
60-70
50-60
40-50
30-40
20-30
10-20
0-10



41

performance with increasingly degraded environments is apparent.  Also, the network’s

sensitivity to added noise in the environment clearly is influenced by several factors: the current

environmental condition, the $ value and current F value, and whether or not LLD is used.

Second, the contours represent the relative advantages in some implementations of LLD.  In

figure 9, this result is clearly visible in the downward slope in the region with F between 4 and 7

dB.  This shows the relative advantage of LLD implementation using a higher threshold value,

such as 15.  Again, table 3 provides a chart quantifying this performance improvement.  Note

that in scenarios with near ideal environments, the default setting for LLD (Threshold=7) is the

best network design.  In scenarios with very high environmental degradation, HELLO messaging

improves performance relative to the default LLD specifications.

Table 4 compared the relative sensitivity of networks using HELLO messaging to those

using LLD with varying threshold values.  A similarity between the results of LLD with a

threshold of 25 and networks using HELLO messaging was noted.  Figure 10 is a graph

comparing the performance of three network designs as the dB of stochastic variations increases.

The three network implementations are no LLD, LLD with a threshold value of 7 and LLD with

a threshold value of 25.  First, the superiority of LLD with threshold value =7 for the range of

F=0-8 is readily apparent.  Also note the relative sensitivity to increased random variation in the

environment (the slope of the curves).  HELLO messaging is clearly less sensitive to noise and

has a slight advantage in performance in the range F=9-10.  Also note the similarity in the results

between HELLO messaging and LLD with a threshold value of 25.  The similarities in the

network performance of networks using these two implementations held across the parameter

space tested and examined in this study. 
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Comparison of Network Performance:
HELLO Messaging vs LLD with High Threshold Values

β=2.2, v=5 m/s, input data rate=100kbps
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Figure 10:  Note the similarity in results between LLD with 

Threshold=25 and HELLO Messaging.  It is hypothesized that with 
high threshold values, RTS packets used in LLD act similar to 

HELLO messages
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5. Discussion and Conclusions

The results from this study indicated that several changes to the existing MANET routing

and MAC layer protocols may improve the performance of a MANET, especially in degraded

environments representative of those encountered in the littoral during amphibious operations.

Further analysis of the results was used to characterize, both quantitatively and qualitatively, the

response of network performance to simulated degraded environmental conditions.  Lastly, many

of the factors influencing the sensitivity of a network’s response to increasing noise in the

environment were identified.

While the current standard implementations for the AODV routing protocol do not utilize

the LLD feedback information provided by the MAC, the simulations in this study showed that

using LLD consistently yielded superior network performance relative to networks operating

with HELLO messaging instead of LLD.  Improvements in network performance of up to 180%,

on average, were observed in simulated environments.  Further, testing different

implementations of LLD resulted in improvements in the network throughput, relative to the

default LLD implementation, of up to 30% on average.  The best LLD method tested in this

study used a threshold of unacknowledged packets set to slightly more than twice the default

value. It was demonstrated that this method of LLD implementation offered superior

performance for all scenarios except ideal and extremely degraded environments.  Further, it was

shown that continuing to increase the threshold value began to decrease the network

performance.

The best LLD implementation for the majority (over 70%) of the scenarios tested in this

study used a threshold value of fifteen (15).  However in environments simulating ideal radio
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propagation, using the default threshold value of seven (7) yielded superior performance.  Also,

in environment with very high attenuation, HELLO messaging or a LLD method with high

threshold value (25) yielded the best network performance.  These results suggest that the design

for LLD is consistent with an assumption of ideal propagation.  However, the results from this

study indicate that this assumption is not valid as even slight increases in the nosie level (dB) in

the environment resulted in situations where increasing the threshold value to fifteen notably

improved the network performance.  

The increased performance in degraded environments may be caused by the regularity of

the HELLO messages that are sent out, allowing neighbors that have moved out of range of each

other to identify this problem faster.  Higher threshold values should make the network less

sensitive to individual variations in the link between two nodes.  Because LLD does not identify

a reason for an unacknowledged packet, all the different problems that might cause a packet to

be lost or unacknowledged are treated equally.  Thus a link that is legitimately broken would be

treated the same as a link that experienced a momentary burst of noise causing the packet to be

unacknowledged.  Many of these temporary variations or other unique situations that do not

necessarily indicate that a link is broken would cause some LLD methods to “identify” false bad

links.  Simulated environments with more noise will have an increased number of isolated

unacknowledged packets caused by random noise in the environment.  This study demonstrated

that a LLD method that is less sensitive to noise and other instantaneous factors may reduce the

congestion in the network caused by unnecessary or premature link error transmissions. This

reduced congestion can improve the overall network performance.  However this study’s results
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also indicated that too large an increase in the threshold value will result in decreasing network

performance.

In scenarios in which a very high threshold value of twenty-five (25) was simulated, the

network performance relative to using a value of 15 (the overall best LLD method identified in

this study) declined markedly.  However, of particular interest was the observation that the

performance of networks using HELLO messaging and networks using LLD with high threshold

values were very similar.  First, it is clear that simply increasing the threshold value will not

continue to improve performance, because eventually the network will take too long to identify

when link errors have occurred.  However, the fact that networks using HELLO messaging (not

using LLD) and networks using LLD with a high threshold behave similarly suggests that the

RTS messages in LLD may begin to act similarly to HELLO messages.  This is possibly

explained by the fact that when the threshold value is set very high, the time-out process causes

RTS packets to be sent on a regular basis, similar to HELLO messages.  The results could imply

that combining some of the functions of the routing and link layers in this situation might

improve performance.  If RTS packets act like HELLO messages in some situations in this

network, then modifying the structure of the RTS packet and including more listening by

neighboring nodes could further improve the network performance. 

Learning that different LLD implementations will improve network performance in

different simulated scenarios suggests that the development of an adaptable form of LLD may be

beneficial.  An adaptable LLD implementation would be software based and would change the

implementation of its LLD dependent upon the environmental conditions and node mobility of

the current situation.  In real environments, especially those in which the military operates, the
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criteria that define the propagation of radio waves in the environment will be constantly

changing.  These changes make the development of an adaptive protocol necessary for optimal

performance in every environment.  The implementation of such a LLD method would be largely

in software so that such changes could happen automatically and on the fly, rather than require a

hardware change-out whenever necessary.  

In this project, “break” and crossover points, points at which a best type of LLD

implementation was replaced by a different LLD implementation, were identified for a range of

variables affecting network performance.  The location and identification of these points will be

important for future development and implementation of an adaptable LLD method.

As was expected, this study found that added environmental noise and interference in the

propagation channel of the physical layer will significantly degrade the network’s overall

performance.  However, the sensitivity of the network to increased environmental degradation

was not linear.  The results from this study were used to analyze the different factors that

influenced the actual sensitivity of the network’s performance to increased environmental

degradation.  A number of factors were identified as influencing the networks performance: the

current environmental condition, the use of LLD, the type of data connection between nodes, the

input data rate and the node velocity.  The results suggest that a MANET has three types of

sensitivity regions.  Initially, if all conditions are ideal for network functionality (lower CBR

input data rate, ideal environment, slower velocity) the network has a buffer zone in which it is

not very sensitive to additional environmental degradation.  In these scenarios, the network is

already operating at maximum throughput and additional noise will not measurably affect the

network’s performance.  The network, in such cases, is essentially insensitive to added
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environmental degradation.  However, this region is very small and increasing any of the factors

that lessen network functionality will make the network performance sensitive to increased

noise.  Conversely, a network in which the factors are markedly impeding network functionality

has a lower performance, but is also less sensitive to increased noise in the environment.  While

there does not appear to be a minimum level of network performance, the rate of decline in

network performance with additional noise does decrease relative to the previous sensitivity

region.  

Also of interest to future studies was the observation of the similarities between the

effects that node mobility and environmental conditions have on network performance.  Past

studies [9,15] have studied network performance in a variety of mobility scenarios, using the

mobility of the nodes in the network as the stress on network performance.  These studies have

concluded that increased mobility decreased a network’s performance and that different routing

protocols were each optimized for different types of environments.  Clearly there are similarities

between the reaction of a MANET to node mobility and its reaction to increased environmental

degradation.  There is also some evidence that these two stresses are not entirely independent as

it was shown that increased mobility will also increase a network’s sensitivity to environmental

degradation.  Future studies that examine routing protocols and LLD methods for use in MANET

may be designed to evaluate a network’s performance while stressing the network by varying

both node mobility and the environmental condition.  Clearly environmental degradation has a

non-linear impact on network performance, possibly affecting results from studies that assume a

constant, ideal environment.
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Lastly, it is useful to note some of the limitations and assumptions of this study.  The

objective of the testing was to record and describe the changes to the network’s performance

caused by simulated degraded environments.  No attempts were made to improve the network

performance by designing changes to the hardware required to run the network.  In particular,

methods to improve bandwidth were not studied because such methods would require

fundamental changes to the hardware and physical layer.  Such issues, while potentially valuable

to network performance, were left to others for future research.  Research into increasing the

network bandwidth would be mutually compatible with the conclusions found in this study

because of the abstraction offered by the OSI network layer model.  However, the effective

bandwidth available for data transmission can be improved indirectly through improvements in

LLD and routing design which minimize the bandwidth required for routing functions.  
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6. Implications for Future Investigations

The results of this study suggest a number of area of research for future studies to

develop.  Both the environmental degradation and node mobility appear to influence and degrade

a network’s performance in similar ways.  However, this study has shown that there is likely an

interaction between a network’s sensitivity to noise and a network’s sensitivity to increased

mobility.  It may be very useful to analyze a network’s performance with respect to both

environmental degradation and node mobility to determine how these two network stresses

interact and influence each other, if at all.  Further simulations using more complex node

mobility scenarios will validate that results can be extrapolated to all types of mobility scenarios.

A sensitivity study into all the factors that influence a network’s sensitivity to increased

noise in the environment would benefit this field of research.  The present study demonstrated

when MANET protocols and LLD methods optimized for scenarios based on too many

assumptions about the factors that influence network performance can cause these designs to be

sub-optimal in all but the most ideal situations.  Knowing exactly what factors influence a

network’s performance and the sensitivity to increased noise (network performance and its

derivative) will ensure that future studies and network protocol designs incorporate better

assumptions about what variables and factors need to be tested and those that can be assumed to

be ideal.  

While more simulation studies can be run, the implementation and then testing of the

proposed LLD methods in hardware would be useful.  It is likely that currently LLD methods are

implemented in hardware.  Modifications to the MAC layer, would then require a redesign of the

Network Interface Card (NIC).  Since the LLD methods in this study all dealt with simply
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changing threshold values, a redesign of the NIC should implement this threshold counter in

software.  It is faster and easier to modify software, making future testing or real networks using

different LLD implementations faster.  Also, an adaptable protocol would have to have the

counter implemented in software so that it could be changed on the fly in the midst of an

operating network.

Further work may examine the potential for improved LLD methods in the MAC layer

other than using this simple method of unacknowledged packets and a threshold value.  Further

development of a more robust LLD method using signal strength or a signal to noise ratio

method could potentially improve network performance by detecting errors in the network prior

to dropping packets.  Such anticipatory methods would minimize the network congestion caused

by the retransmission of dropped packets and also decrease the time delay in identifying a bad

link.  A LLD method based on signal to noise ratio should incorporate both the noise in the

environment (which is modeled by a combination of the $ and F values in the log-normal

shadowing model) and trends in the signal strength.  By examining the trends in the signal

strength, instead of individual measurements, the LLD will make the network less sensitive to

individual “bursts” of noise.  However, the inclusion of the signal to noise ratio in this

measurement would prevent this decreased sensitivity to noise from taking too long to identify

broken links.  Testing to optimize this LLD method should examine the number of past

transmissions that should be recorded to identify a trend in performance and the appropriate

criteria for deciding when a link is ready to break.  The type of trends to use (whether they are

linear, exponential or other) would also need to be optimized.  Clearly, un-optimized criteria
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either result in a slow response to link errors or results in too many falsely identified link errors,

both of which have a detrimental effect on the network’s performance.  

Lastly, tests validate the log normal shadowing model, and characterize the $ & F values

of real environments likely to be encountered during amphibious operations would be useful.

This study assumed that the log-normal shadowing model of environmental degradation was a

valid method of modeling the environment.  Validating this assumption and knowing values that

characterize specific littoral environments would be beneficial to future studies attempting to

simulate networks operating in degraded environments.

 This study defined a research area in which future work clearly has a potential to improve

network routing with particular application to military amphibious operations.  More robust and

effective communications will directly translate into the increased effectiveness of assault forces.
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Appendix A:  Source Code for Simulation Scenario

Below is one example of the source code that was used to implement the mobility and

environmental aspects of a scenario being simulated in NS2.  It is written in Tool Command

Language (TCL) and interpreted in NS2.  Because each simulated environment has a different

set of criteria, each simulated scenario has different source code.  The example below is from a

scenario with the following specifications:  node velocity of 5 m/s, data input rate of 100kbps,

packet size of 1000 bytes, and simulated environmental criteria of $=2.0 and F=0.00

The other criteria, relating to the MAC and routing layers are determined within the NS2

source code and require recompilation of NS2 between simulations.

# LLD-test_Shadow.txt
#unfortunately, there is no easy way to have the ns simulation detect whether LLD is on or off
...
#thus I recompile and rerun the data, being careful to properly label the resulting output files.

#starting in a diamond formation, two of the nodes move away from each other ... examine how 
#long it takes the two protocols with/without LLD to notice the difference and route through the
other nodes
#data is recorded in files with the three numbers being:  path loss exponent, std deviation,
velocity

#use of Shadowing propogation model to examine the effect of environmental factors on performance
Propagation/Shadowing set pathlossExp_ 2.00 ;# path loss exponent 
Propagation/Shadowing set std_db_ 0.00 ;# shadowing deviation (dB) 
Propagation/Shadowing set dist0_ 1 ;# reference distance (m)
Propagation/Shadowing set seed_ 0 ;# seed for RNG
set val(velocity) 5.0 ;# velocity (m/s) of nodes 
set val(data_rate) 100kb ;# cbr data rate
set val(packet_size) 1000 ;# cbr packet size

#for labeling purposes ... will print specifics to the screen
puts  "AODV, Beta=2.00, Std Dev=0.00, v=5, for 100s" 

# ======================================================================
# Define options (wireless variables)
# ======================================================================
set val(chan)           Channel/WirelessChannel ;# channel type
set val(prop)           Propagation/Shadowing ;# radio-propagation model
set val(netif)          Phy/WirelessPhy ;# network interface type
set val(mac)            Mac/802_11 ;# MAC type
set val(ifq)            Queue/DropTail/PriQueue ;# interface queue type
set val(ll)             LL ;# link layer type
set val(ant)            Antenna/OmniAntenna ;# antenna model
set val(ifqlen)         50 ;# max packet in ifq
set val(nn)             10 ;# number of mobilenodes
set val(rp)             AODV ;# routing protocol

# ======================================================================
# Main Program
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# ======================================================================

#
# Initialize Global Variables
#
set ns_ [new Simulator]
$ns_ use-newtrace

#setup traces (NAM and standard trace)

set tracefd     [open AODV-B2.00-stdev0.00-v5-t100_cbr.tr w] 
$ns_ trace-all $tracefd

# set up topography object
set topo       [new Topography]

$topo load_flatgrid 1000 1000

#
# Create God
#
create-god $val(nn)

#
#  Create the specified number of mobilenodes [$val(nn)] and "attach" them
#  to the channel. 
# configure node

        $ns_ node-config -adhocRouting $val(rp) \
 -llType $val(ll) \
 -macType $val(mac) \
 -ifqType $val(ifq) \
 -ifqLen $val(ifqlen) \
 -antType $val(ant) \
 -propType $val(prop) \
 -phyType $val(netif) \
 -channelType $val(chan) \
 -topoInstance $topo \
 -agentTrace ON \
 -routerTrace OFF \
 -macTrace OFF \
 -movementTrace OFF
 

for {set i 0} {$i < $val(nn) } {incr i} {
set node_($i) [$ns_ node]
$node_($i) random-motion 1 ;# disable random motion

}

#
# Provide initial (X,Y, for now Z=0) co-ordinates for mobilenodes

$node_(0) set X_ 500
$node_(0) set Y_ 550
$node_(0) set Z_ 0.0

$node_(1) set X_ 500
$node_(1) set Y_ 450
$node_(1) set Z_ 0.0

$node_(2) set X_ 150
$node_(2) set Y_ 500
$node_(2) set Z_ 0

$node_(3) set X_ 250
$node_(3) set Y_ 500
$node_(3) set Z_ 0

$node_(4) set X_ 350
$node_(4) set Y_ 500
$node_(4) set Z_ 0

$node_(5) set X_ 450
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$node_(5) set Y_ 500
$node_(5) set Z_ 0

$node_(6) set X_ 550
$node_(6) set Y_ 500
$node_(6) set Z_ 0

$node_(7) set X_ 650
$node_(7) set Y_ 500
$node_(7) set Z_ 0

$node_(8) set X_ 750
$node_(8) set Y_ 500
$node_(8) set Z_ 0

$node_(9) set X_ 850
$node_(9) set Y_ 500
$node_(9) set Z_ 0

$ns_ at 1.0 "$node_(0) setdest 990.0 550.0 $val(velocity)"
$ns_ at 1.0 "$node_(1) setdest 10.00 450.0 $val(velocity)"
$ns_ at 1.0 "$node_(2) setdest 150.0 500.0 $val(velocity)"
$ns_ at 1.0 "$node_(3) setdest 250.0 500.0 $val(velocity)"
$ns_ at 1.0 "$node_(4) setdest 350.0 500.0 $val(velocity)"
$ns_ at 1.0 "$node_(5) setdest 450.0 500.0 $val(velocity)"
$ns_ at 1.0 "$node_(6) setdest 550.0 500.0 $val(velocity)"
$ns_ at 1.0 "$node_(7) setdest 650.0 500.0 $val(velocity)"
$ns_ at 1.0 "$node_(8) setdest 750.0 500.0 $val(velocity)"
$ns_ at 1.0 "$node_(9) setdest 850.0 500.0 $val(velocity)"

# Setup traffic flow between nodes

##### FOR CBR TRAFFIC SOURCE #####
set source [new Agent/UDP]
$ns_ attach-agent $node_(0) $source

set sink [new Agent/UDP]
$ns_ attach-agent $node_(1) $sink
$ns_ connect $source $sink

set traffic [new Application/Traffic/CBR]
$traffic set packetSize_ $val(packet_size)
$traffic set rate_ $val(data_rate)
$traffic attach-agent $source 
$ns_ at 2.0 "$traffic start" 

##### FOR FTP/TCP TRAFFIC SOURCE #####
# TCP connections between node_(0) and node_(1)
#set source [new Agent/TCP]
#$ns_ attach-agent $node_(0) $source
#
#set sink [new Agent/TCPSink]
#$ns_ attach-agent $node_(1) $sink
#$ns_ connect $source $sink
#
#set ftp [new Application/FTP]
#$ftp attach-agent $source
#$ns_ at 2.0 "$ftp start" 
#

# Tell nodes when the simulation ends
#
for {set i 0} {$i < $val(nn) } {incr i} {
    $ns_ at (100.1) "$node_($i) reset"; 
}

$ns_ at 10 "puts \"SIMULATION TIME:  10 seconds ...\""
$ns_ at 20 "puts \"SIMULATION TIME:  20 seconds ...\" "
$ns_ at 30 "puts \"SIMULATION TIME:  30 seconds ...\" "
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$ns_ at 40 "puts \"SIMULATION TIME:  40 seconds ...\""
$ns_ at 60 "puts \"SIMULATION TIME:  60 seconds ...\" "
$ns_ at 70 "puts \"SIMULATION TIME:  70 seconds ...\""
$ns_ at 80 "puts \"SIMULATION TIME:  80 seconds ...\" "
$ns_ at 90 "puts \"SIMULATION TIME:  90 seconds ...\" "
$ns_ at 100 "stop" 
$ns_ at 100.01 "puts \"NS EXITING...\" ; $ns_ halt" 

proc stop {} {
    global ns_ tracefd nt
    $ns_ flush-trace
    close $tracefd
}

puts "Starting Simulation..."
$ns_ run
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Appendix B:  Source Code for Trace File Analysis Program

Below is the source code for the data analysis awk program used to analyze the NS2 trace

files created during simulations.  It is written in awk, an interpreter language which is

specifically designed for analyzing text files and strings.  During simulations, NS2 writes a

separate line to the trace file for every recorded network action.  This code reads a line of text,

uses if-then statements to determine what action took place and maintains a running total of the

number of each action.  

Data is recorded on the number of: total packets sent, data packets sent, routing packets,

ack packets sent, request packets sent, total packets dropped, routing packets dropped, data

packets dropped, hello packets sent and total errors found during the simulation.

BEGIN{ drop=0;
all_drop=0;
data_drop=0; 
route_drop=0;
reply_drop=0;
request_drop=0;
ack_drop=0;

data_received=0;

all_sent=0;
data_sent=0;
route_sent=0;
hello_sent=0;
ack_sent=0;

errors=0; 
time=0;
print(""); }

{
#examining the sent packets
  if(/s -t/)  {
     if(/-Nl AGT/)     { 
       if(/-It tcp/ || /-It cbr/) { data_sent++; }
       if(/-It ack/) { ack_sent++; }  }
     if(/-It AODV/ || /-It DSR/) { 

route_sent++; 
if(/REPLY/) {reply_sent++;}
if(/HELLO/) { hello_sent++; }
if(/REQUEST/) {request_sent++;}
if(/ERROR/)   {

#    print(drop " drops occurred before reported error at " $3 " by " $5 );
   drop=0;
   errors ++;  } } } 

#examining the received packets
  if(/r -t/ && /-Nl AGT/ && !/-It ack/ ) {data_received++;}
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#examining the dropped packets
  if(/d -t/)  {
#   print("packet dropped:  sent from " $5 " at " $3 " (" $31 ")");
    all_drop++;
    drop++;

    if(/-It AODV/ || /-It DSR/)  {route_drop++;}
    if(/-It tcp/ || /-It cbr/) {data_drop++;}  
    if(/-It ack/) {ack_drop++;}
}

}
END{ printf(data_sent+route_sent+ack_sent "\t" route_sent "\t" hello_sent "\t" request_sent
"\t" reply_sent "\t" errors "\t" data_received "\t" data_sent "\t\t" all_drop "\t" data_drop "\t"
route_drop "\t" ack_drop);
}
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Appendix C:  Selected Source Code from mac-802_11.cc

The code below is two selected functions from the mac-802_11.cc file used to implement

Link Layer Detection in the 802.11 MAC layer protocol in NS2.  These functions deal with the

actions of the link layer after an RTS message or data packet is sent but not acknowledged.

These functions maintain a count of the number of packets that fail to be acknowledged and call

another function to pass data to the routing layer if this threshold value is exceeded.  The exact

threshold value is a one-line definition statement included in the mac-802_11.h file.  The code

below also reflects modifications made to the source code to aid print error messages to the

console output to aid in debugging and further source code modification.  Note that these

changes can be commented out with definition statements included in the .h file.    

/* ======================================================================
   Retransmission Routines
   ====================================================================== */
void
Mac802_11::RetransmitRTS()
{

assert(pktTx_);
assert(pktRTS_);
assert(mhBackoff_.busy() == 0);

macmib_->RTSFailureCount++;

#ifdef FLEISCHAKER_OUTPUT
fprintf(stderr, "(%d) Failed RTS's:  %d (%d in a row)\t\t%.2f\n", index_,

macmib_->RTSFailureCount, ssrc_,Scheduler::instance().clock());

#ifdef FLEISCHAKER_STDOUT
fprintf(stdout, "(Failed RTS's:  %d (%d in a row)\n", macmib_->RTSFailureCount,

ssrc_);
#endif

#endif //fleischaker_output

ssrc_ += 1; // STA Short Retry Count
 

if(ssrc_ >= macmib_->ShortRetryLimit) {

#ifdef FLEISCHAKER_OUTPUT
fprintf(stderr, "***(%d)....RTS threshold exceded:%x\t\t%.2f\n", index_,

pktRTS_, Scheduler::instance().clock());
#ifdef FLEISCHAKER_STDOUT

fprintf(stdout, "***(%d)....RTS threshold exceded:%x\t\t%.2f\n",
index_, pktRTS_, Scheduler::instance().clock());

#endif

#endif //fleischaker_output
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discard(pktRTS_, DROP_MAC_RETRY_COUNT_EXCEEDED); pktRTS_ = 0;
/* tell the callback the send operation failed 
   before discarding the packet */
hdr_cmn *ch = HDR_CMN(pktTx_);
if (ch->xmit_failure_) {

                        /*
                         *  Need to remove the MAC header so that 
                         *  re-cycled packets don't keep getting
                         *  bigger.
                         */
                        ch->size() -= ETHER_HDR_LEN11;
                        ch->xmit_reason_ = XMIT_REASON_RTS;
                        ch->xmit_failure_(pktTx_->copy(),
                                          ch->xmit_failure_data_);

}

discard(pktTx_, DROP_MAC_RETRY_COUNT_EXCEEDED); pktTx_ = 0;
ssrc_ = 0;
rst_cw();

} else {

//***********************
#ifdef FLEISCHAKER_OUTPUT

fprintf(stdout, "(%d)...retransmitting RTS:%x\n",index_,pktRTS_);
#endif //fleischaker_verbose

struct rts_frame *rf;
rf = (struct rts_frame*)pktRTS_->access(hdr_mac::offset_);
rf->rf_fc.fc_retry = 1;

inc_cw();
mhBackoff_.start(cw_, is_idle());

}
}

void
Mac802_11::RetransmitDATA()
{

struct hdr_cmn *ch;
struct hdr_mac802_11 *mh;
u_int32_t *rcount, *thresh;

assert(mhBackoff_.busy() == 0);

assert(pktTx_);
assert(pktRTS_ == 0);

ch = HDR_CMN(pktTx_);
mh = HDR_MAC802_11(pktTx_);

/*
 *  Broadcast packets don't get ACKed and therefore
 *  are never retransmitted.
 */
if((u_int32_t)ETHER_ADDR(mh->dh_da) == MAC_BROADCAST) {

Packet::free(pktTx_); pktTx_ = 0;

/*
 * Backoff at end of TX.
 */
rst_cw();
mhBackoff_.start(cw_, is_idle());

#ifdef FLEISCHAKER_VERBOSE
f p r i n t f ( s t d e r r ,  " L o s t  B r o a d c a s t

message\t%.2f\n",Scheduler::instance().clock());
#ifdef FLEISCHAKER_STDOUT

f p r i n t f ( s t d o u t ,  " L o s t  B r o a d c a s t
message\t%.2f\n",Scheduler::instance().clock());

#endif
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#endif 

return;
}

macmib_->ACKFailureCount++;

#ifdef FLEISCHAKER_OUTPUT
//NATHAN's test code- 14 FEB2003
//apparently this code is not used often, largely because 
//the real errors are detected with the RTS/CTS messages that
//probably don't get answered

f p r i n t f ( s t d e r r ,  " L O S T  A C K  o f  D A T A ,  n u m b e r :
%d\t%.2f\n",macmib_->ACKFailureCount,Scheduler::instance().clock());

// END OF NATHAN's TEST CODE
#endif //fleischaker_output

if((u_int32_t) ch->size() <= macmib_->RTSThreshold) {
rcount = &ssrc_;
thresh = &macmib_->ShortRetryLimit;

}
else {

rcount = &slrc_;
thresh = &macmib_->LongRetryLimit;

}

(*rcount)++;

if(*rcount > *thresh) {
macmib_->FailedCount++; 

 

#ifdef FLEISCHKER_OUTPUT
//NATHAN's test code- 14 FEB2003
//apparently this code is not used often, largely because 
//the real errors are detected with the RTS/CTS messages that
//probably don't get answered
printf(stdout, "FAILED LINK number:  %d", macmib_->FailedCount);
// END OF NATHAN's TEST CODE

#endif //fleischaker_output

/* tell the callback the send operation failed 
   before discarding the packet */
hdr_cmn *ch = HDR_CMN(pktTx_);
if (ch->xmit_failure_) {

                        ch->size() -= ETHER_HDR_LEN11;
                        ch->xmit_reason_ = XMIT_REASON_ACK;
                        ch->xmit_failure_(pktTx_->copy(),
                                          ch->xmit_failure_data_);
                }

discard(pktTx_, DROP_MAC_RETRY_COUNT_EXCEEDED); pktTx_ = 0;
printf("(%d)DATA discarded: count exceeded\n",index_);
*rcount = 0;
rst_cw();

}
else {

struct hdr_mac802_11 *dh;
dh = HDR_MAC802_11(pktTx_);
dh->dh_fc.fc_retry = 1;

sendRTS(ETHER_ADDR(mh->dh_da));
//printf("(%d)retxing data:%x..sendRTS..\n",index_,pktTx_);
inc_cw();
mhBackoff_.start(cw_, is_idle());

}
}
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Appendix D:  Selected Source Code from Shadows

The code below is a selection from the Visual C++ source code for Shadows.exe, the

program written to automate part of the data collection process in this study.  As noted in

Appendix A, each simulation test requires either a recompilation of NS2 or a new simulation

source code which modifies the values appropriately.  This program, Shadows, produces a

collection the source code files modified in the appropriate places as defined by the user’s input

to a Graphical User Interface.  It also produces two batch files, one to run the NS2 simulator with

each of the generated scenarios and one to run the data analysis program on the resulting trace

files.  The program allows the user to specify a range of values which several different variables

($, F, data rate, packet size, and velocity) will take.  A separate scenario source file is then

created for every combination of these variables, and the batch files are created accordingly.

// shadowsDlg.cpp : implementation file
/////////////////////////////////////////////////////////////////////////////
// CShadowsDlg dialog

CShadowsDlg::CShadowsDlg(CWnd* pParent /*=NULL*/)
: CDialog(CShadowsDlg::IDD, pParent)

{
//{{AFX_DATA_INIT(CShadowsDlg)
m_check_db_vary = FALSE;
m_check_dr_vary = FALSE;
m_check_pe_vary = FALSE;
m_check_ps_vary = FALSE;
m_edit_db_base = _T("0.0");
m_edit_db_interval = _T("1.0");
m_edit_db_n_intervals = _T("21");
m_edit_db_offset = _T("0.0");
m_edit_dr_base = _T("100");
m_edit_dr_interval = _T("0");
m_edit_dr_n_intervals = _T("0");
m_edit_dr_offset = _T("0");
m_edit_pe_base = _T("2.0");
m_edit_pe_interval = _T("0.1");
m_edit_pe_n_intervals = _T("11");
m_ediit_pe_offset = _T("0.0");
m_edit_ps_base = _T("1000");
m_edit_ps_interval = _T("0");
m_edit_ps_n_intervals = _T("0");
m_edit_ps_offset = _T("0");
m_check_v_vary = FALSE;
m_edit_v_base = _T("10");
m_edit_v_interval = _T("10");
m_edit_v_n_intervals = _T("2");
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m_edit_v_offset = _T("0");
//}}AFX_DATA_INIT
// Note that LoadIcon does not require a subsequent DestroyIcon in Win32
m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

}

void CShadowsDlg::pe_gear (double pe, double db, long dr, long ps, long v)
{

if (m_check_pe_vary)
{

pe = pe + atof(this->m_ediit_pe_offset);
long N = atoi (m_edit_pe_n_intervals);
for (long s = 0; s < N; ++s)
{

db_gear (pe, db, dr, ps, v);
pe = pe + atof (m_edit_pe_interval);

}
}
else
{

db_gear (pe, db, dr, ps, v);
}

}

void CShadowsDlg::db_gear (double pe, double db, long dr, long ps, long v)
{

if (m_check_db_vary)
{

db = db + atof(m_edit_db_offset);
long N = atoi (m_edit_db_n_intervals);
for (long s = 0; s < N; ++s)
{

dr_gear (pe, db, dr, ps, v);
db = db + atof (m_edit_db_interval);

}
}
else
{

dr_gear (pe, db, dr, ps, v);
}

}

void CShadowsDlg::dr_gear (double pe, double db, long dr, long ps, long v)
{

if (m_check_dr_vary)
{

dr = dr + atoi (m_edit_dr_offset);
long N = atoi (m_edit_dr_n_intervals);
for (long s = 0; s < N; ++s)
{

ps_gear (pe, db, dr, ps, v);
dr = dr + atoi (m_edit_dr_interval);

}
}
else
{

ps_gear (pe, db, dr, ps, v);
}

}

void CShadowsDlg::ps_gear (double pe, double db, long dr, long ps, long v)
{

if (m_check_ps_vary)
{

ps = ps + atoi (m_edit_ps_offset);
long N = atoi (m_edit_ps_n_intervals);
for (long s = 0; s < N; ++s)
{

v_gear (pe, db, dr, ps, v);
ps = ps + atoi (m_edit_ps_interval);

}
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}
else
{

v_gear (pe, db, dr, ps, v);
}

}

void CShadowsDlg::v_gear (double pe, double db, long dr, long ps, long v)
{

if (m_check_v_vary)
{

v = v + atoi (m_edit_v_offset);
long N = atoi (m_edit_v_n_intervals);
for (long s = 0; s < N; ++s)
{

jigsaw (pe, db, dr, ps, v);
v = v + atoi (m_edit_v_interval);

}
}
else
{

jigsaw (pe, db, dr, ps, v);
}

}

void CShadowsDlg::jigsaw (double pe, double db, long dr, long ps, long v)
{

// v*t = 500
long t = 500 / v;

// determine fname
// format: pe_N_db_N_dr_N_ps_N_v_N
long peN2 = (long) (pe * 100.0);
long dbN2 = (long) (db * 100.0);

// batch file
char dest[160];
sprintf (dest, "c:\\shadows\\output\\pe_%d_db_%d_dr_%d_ps_%d_v_%d.txt",peN2,dbN2,dr,ps,v);
// remove dest
_unlink(dest);
// create dest
FILE *f2 = fopen(dest,"a+b");
if (f2 == NULL)

return;
char line [160];
jigsaw_append_file (f2, "c:\\shadows\\jigsaws\\jigsaw1.txt");

// Propagation/Shadowing set pathlossExp_ 2.5 ;# path loss exponent \r\n
sprintf (line, "Propagation/Shadowing set pathlossExp_ %-.2f\t\t;# path loss exponent

\r\n",pe);
jigsaw_append_line (f2, line);

// Propagation/Shadowing set std_db_ 4.0 ;# shadowing deviation (dB) \r\n
sprintf (line, "Propagation/Shadowing set std_db_ %-.2f\t\t;# shadowing deviation (dB)

\r\n",db);
jigsaw_append_line (f2, line);

jigsaw_append_file (f2, "c:\\shadows\\jigsaws\\jigsaw2.txt");

// set val(velocity) 20.0 ;# velocity (m/s) of nodes \r\n
sprintf (line, "set val(velocity)\t%d.0\t\t\t;# velocity (m/s) of nodes \r\n",v);
jigsaw_append_line (f2, line);

// set val(data_rate) 100kb ;# cbr data rate
sprintf (line, "set val(data_rate)\t%dkb\t\t\t;# cbr data rate\r\n",dr);
jigsaw_append_line (f2, line);

// set val(packet_size) 1000 ;# cbr packet size
sprintf (line, "set val(packet_size)\t%d\t\t\t;# cbr packet size\r\n",ps);
jigsaw_append_line (f2, line);

jigsaw_append_file (f2, "c:\\shadows\\jigsaws\\jigsaw3.txt");
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// puts  "AODV LLD ON, Beta=2.5, Std Dev=4.0, v=20, for 25s" \r\n
sprintf (line, "puts  \"AODV, Beta=%-.2f, Std Dev=%-.2f, v=%d, for %ds\" \r\n",pe,db,v,t);
jigsaw_append_line (f2, line);

jigsaw_append_file (f2, "c:\\shadows\\jigsaws\\jigsaw4.txt");

// set tracefd     [open AODV-B2.5-stdev4.0-v20-t25_with-LLD_cbr.tr w] \r\n
sprintf (line, "set tracefd     [open AODV-B%-.2f-stdev%-.2f-v%d-t%d_cbr.otr w]

\r\n",pe,db,v,t);
jigsaw_append_line (f2, line);

jigsaw_append_file (f2, "c:\\shadows\\jigsaws\\jigsaw5.txt");

//     $ns_ at (25.1) "$node_($i) reset"; \r\n
sprintf (line, "    $ns_ at (%d.1) \"$node_($i) reset\"; \r\n",t);
jigsaw_append_line (f2, line);

jigsaw_append_file (f2, "c:\\shadows\\jigsaws\\jigsaw6.txt");

// $ns_ at 25 "stop" \r\n
sprintf (line, "$ns_ at %d \"stop\" \r\n",t);
jigsaw_append_line (f2, line);

// $ns_ at 25.01 "puts \"NS EXITING...\" ; $ns_ halt" \r\n
sprintf (line, "$ns_ at %d.01 \"puts \\\"NS EXITING...\\\" ; $ns_ halt\" \r\n",t);
jigsaw_append_line (f2, line);

jigsaw_append_file (f2, "c:\\shadows\\jigsaws\\jigsaw7.txt");

// append dest to pre-process batch
FILE *fpre = fopen ("c:\\shadows\\output\\pre_process.bat","a+b");
if (fpre == NULL)

return;
char preline[320];
// NOTE: change formatting on preline to change output to pre-process batch file
sprintf(preline,"ns pe_%d_db_%d_dr_%d_ps_%d_v_%d.txt",peN2,dbN2,dr,ps,v);
strcat(preline,"\r\n");
fwrite(preline, strlen(preline), 1, fpre);
fclose (fpre);

// append dest to post-process batch
FILE *fpost = fopen ("c:\\shadows\\output\\post_process.bat","a+b");
if (fpost == NULL)

return;
char postline[320];
// NOTE: change formatting on preline to change output to pre-process batch file
sprintf (postline, "awk -f data_sent_drop_output-excel-cbr.awk

AODV-B%-.2f-stdev%-.2f-v%d-t%d_cbr.tr >> data.txt\r\n",pe,db,v,t);
fwrite(postline, strlen(postline), 1, fpre);
fclose (fpost);

fclose (f2);
}

void CShadowsDlg::jigsaw_append_file (FILE *f2, char *src)
{

FILE *f1 = fopen (src, "rb");
ASSERT (f1 != NULL);

fseek(f1,0,SEEK_END);
long position = ftell(f1);
long len = position;

fseek(f1,0,SEEK_SET);
long len64 = len / 160;

long i, s;
char msz_final[161];

for (i=0;i<len64;++i)
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{
s = fread(msz_final, 160, 1, f1);
if (s != 0)

fwrite(msz_final, 160, 1, f2);
}
len -= len64 * 160;

if (len != 0)
{

s = fread(msz_final, len, 1, f1);
if (s != 0)

fwrite(msz_final, len, 1, f2);
}
fclose (f1);

}

void CShadowsDlg::jigsaw_append_line (FILE *f2, char *line)
{

long s = fwrite(line, strlen(line), 1, f2);
if (s == 0)

TRACE ("null\r\n");
else

TRACE (line);
}
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Appendix E: Nomenclature of Trace and Scenario File Definition Files

The format used for naming the scenario definition file is:

pe_<$ value>_db_<F value>_dr_<data rate in kbps>_ps_<packet size in bytes>_v_<value of node velocity>.txt

ex:  pe_200_db_300_dr_100_ps_1000_v_5.txt

The format used for naming the resulting trace file is:

<routing protocol>-B <$ value>-stdev <F value>-v <value of node velocity>-t<time>_<cbr or tcp>.tr

ex:  AODV-B2.00-stdev3.00-v5-t100_cbr.tr

Note that the trace file naming system does not incorporate the packet size or data rate

information.  During this study, the trace files were saved initially to separate folders and then

separate CDs. Each folder of CD contained only trace files from scenarios with specific criteria,

and they were labeled appropriately.

The following examples are from the batch files produced by shadows.  Also noted briefly is the

syntax used for entering data into the command console:

Example line from pre_process.bat:

ns AODV-B2.00-stdev3.00-v5-t100_cbr.tr

ns <filename.txt>: calls the NS2 executable and simulates the scenario defined in filename.txt
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Example line from post_process.bat:

awk -f data_sent_drop_output-excel-cbr.awk AODV-B2.50-stdev9.00-v5-t100_cbr.tr >> data.txt

awk  -f <awk file> <input file> >>  <output stream>: call the awk executable and specifies the

awk program is awk file; input file is the trace file to be read and output stream is the file into

where the output is piped. 
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Beta=2.0 Comparison to using Threshold Value=7 Comparison to using HELLO messages
Std Dev NO LLD 3.00 7.00 8.00 11.00 15.00 3.00 8.00 11.00 15.00 15 %improvement 3.00 7.00 7 %improvement 8.00 11.00 15.00 15 %improvement 

0.00 59.43 89.55 89.14 89.14 89.14 88.90 0.41 0.00 0.00 -0.24 -0.27 30.12 29.71 50.00 29.71 29.71 29.47 49.59
1.00 59.43 91.27 89.63 89.63 89.63 89.06 1.63 0.00 0.00 -0.57 -0.64 31.84 30.20 50.82 30.20 30.20 29.63 49.86
2.00 59.35 81.22 99.51 99.51 99.51 88.08 -18.29 0.00 0.00 -11.43 -11.48 21.88 40.16 67.68 40.16 40.16 28.73 48.42
3.00 59.10 74.20 99.43 99.43 99.43 99.92 -25.22 0.00 0.00 0.49 0.49 15.10 40.33 68.23 40.33 40.33 40.82 69.06
4.00 58.86 61.63 91.51 91.51 91.51 99.27 -29.88 0.00 0.00 7.76 8.47 2.78 32.65 55.48 32.65 32.65 40.41 68.65
5.00 58.53 62.20 77.31 77.31 77.31 99.10 -15.10 0.00 0.00 21.80 28.19 3.67 18.78 32.08 18.78 18.78 40.57 69.32
6.00 57.31 52.41 71.59 71.59 71.59 83.92 -19.18 0.00 0.00 12.33 17.22 -4.90 14.29 24.93 14.29 14.29 26.61 46.44
7.00 56.90 51.51 75.27 75.27 75.27 74.42 -23.76 0.00 0.00 -0.85 -1.13 -5.39 18.37 32.28 18.37 18.37 17.52 30.79
8.00 56.16 46.69 73.55 73.55 73.55 69.47 -26.86 0.00 0.00 -4.08 -5.55 -9.47 17.39 30.96 17.39 17.39 13.31 23.69
9.00 55.43 43.18 66.04 66.04 66.04 70.20 -22.86 0.00 0.00 4.16 6.30 -12.24 10.61 19.15 10.61 10.61 14.78 26.66

10.00 54.86 41.47 62.20 62.20 71.02 64.82 -20.73 0.00 8.82 2.61 4.20 -13.39 7.35 13.39 7.35 16.16 9.96 18.15
slope -0.49 -5.37 -3.41 -3.41 -3.01 -2.89 average 7.28 40.45 45.51

Beta=2.1
Std Dev NO LLD 3.00 7.00 8.00 11.00 15.00 3.00 8.00 11.00 15.00 %improvement 3.00 7.00 7 %improvement 8.00 11.00 15.00 15 %improvement 

0.00 52.16 99.92 99.76 99.76 99.67 99.67 0.16 0.00 -0.08 -0.08 -0.08 47.76 47.59 91.24 47.59 47.51 47.51 91.08
1.00 53.06 97.96 99.35 99.35 99.84 97.96 -1.39 0.00 0.49 -1.39 -1.40 44.90 46.29 87.23 46.29 46.78 44.90 84.62
2.00 53.63 90.29 99.27 99.27 99.02 99.43 -8.98 0.00 -0.24 0.16 0.16 36.65 45.63 85.08 45.63 45.39 45.80 85.39
3.00 53.22 72.82 97.96 97.96 95.43 98.04 -25.14 0.00 -2.53 0.08 0.08 19.59 44.73 84.05 44.73 42.20 44.82 84.20
4.00 53.14 59.51 64.33 84.05 76.24 95.18 -4.82 19.72 11.92 30.86 47.97 6.37 11.18 21.04 30.91 23.10 42.04 79.11
5.00 51.59 54.12 76.00 76.00 58.04 80.33 -21.88 0.00 -17.96 4.33 5.69 2.53 24.41 47.31 24.41 6.45 28.73 55.70
6.00 51.59 42.86 68.33 68.33 50.04 78.44 -25.47 0.00 -18.29 10.12 14.80 -8.73 16.73 32.44 16.73 -1.55 26.85 52.04
7.00 50.45 34.86 68.98 68.98 45.47 78.44 -34.12 0.00 -23.51 9.46 13.72 -15.59 18.53 36.73 18.53 -4.98 27.99 55.49
8.00 50.04 39.10 57.55 57.55 38.12 76.72 -18.45 0.00 -19.43 19.16 33.30 -10.94 7.51 15.01 7.51 -11.92 26.68 53.31
9.00 49.47 34.45 52.49 52.49 40.82 56.33 -18.04 0.00 -11.67 3.84 7.31 -15.02 3.02 6.11 3.02 -8.65 6.86 13.86

10.00 49.14 28.65 48.98 48.98 47.43 52.41 -20.33 0.00 -1.55 3.43 7.00 -20.49 -0.16 -0.33 -0.16 -1.71 3.27 6.64
slope -0.43 -7.79 -5.64 -5.82 -7.33 -4.79 average 18.54 45.99 60.13

Beta=2.2
Std Dev NO LLD 3.00 7.00 8.00 11.00 15.00 3.00 8.00 11.00 15.00 %improvement 3.00 7.00 7 %improvement 8.00 11.00 15.00 15 %improvement 

0.00 38.37 99.84 99.67 99.67 99.67 99.35 0.16 0.00 0.00 -0.33 -0.33 61.47 61.31 159.79 61.31 61.31 60.98 158.94
1.00 38.69 96.73 99.84 99.84 99.84 98.78 -3.10 0.00 0.00 -1.06 -1.06 58.04 61.14 158.02 61.14 61.14 60.08 155.27
2.00 39.51 78.37 99.02 99.02 99.02 98.12 -20.65 0.00 0.00 -0.90 -0.91 38.86 59.51 150.62 59.51 59.51 58.61 148.35
3.00 39.67 51.92 95.43 95.43 95.43 95.67 -43.51 0.00 0.00 0.24 0.26 12.24 55.76 140.53 55.76 55.76 56.00 141.15
4.00 40.16 47.51 76.24 76.24 76.24 83.84 -28.73 0.00 0.00 7.59 9.96 7.35 36.08 89.84 36.08 36.08 43.67 108.74
5.00 40.90 35.67 58.04 58.04 58.04 65.71 -22.37 0.00 0.00 7.67 13.22 -5.22 17.14 41.92 17.14 17.14 24.82 60.68
6.00 41.22 32.57 50.04 50.04 50.04 55.67 -17.47 0.00 0.00 5.63 11.26 -8.65 8.82 21.39 8.82 8.82 14.45 35.05
7.00 41.22 26.94 45.47 45.47 45.47 59.76 -18.53 0.00 0.00 14.29 31.42 -14.29 4.24 10.30 4.24 4.24 18.53 44.95
8.00 41.96 26.20 38.12 38.12 38.12 48.24 -11.92 0.00 0.00 10.12 26.55 -15.76 -3.84 -9.14 -3.84 -3.84 6.29 14.98
9.00 42.04 24.98 40.82 40.82 40.82 51.67 -15.84 0.00 0.00 10.86 26.60 -17.06 -1.22 -2.91 -1.22 -1.22 9.63 22.91

10.00 41.80 23.51 36.24 36.24 47.43 44.90 -12.73 0.00 11.18 8.65 23.87 -18.29 -5.55 -13.28 -5.55 5.63 3.10 7.42
slope 0.38 -8.09 -7.84 -7.84 -7.33 -6.46 average 20.41 67.91 81.68

Beta=2.3
Std Dev NO LLD 3.00 7.00 8.00 11.00 15.00 3.00 8.00 11.00 15.00 %improvement 3.00 7.00 7 %improvement 8.00 11.00 15.00 15 %improvement 

0.00 28.65 99.67 99.76 99.76 99.76 99.10 -0.08 0.00 0.00 -0.65 -0.65 71.02 71.10 248.15 71.10 71.10 70.45 245.87
1.00 28.73 98.69 97.39 97.39 97.39 95.84 1.31 0.00 0.00 -1.55 -1.59 69.96 68.65 238.92 68.65 68.65 67.10 233.52
2.00 29.31 77.63 96.73 96.73 96.73 96.65 -19.10 0.00 0.00 -0.08 -0.08 48.33 67.43 230.08 67.43 67.43 67.35 229.81
3.00 30.20 47.76 88.98 88.98 88.98 83.76 -41.22 0.00 0.00 -5.22 -5.87 17.55 58.78 194.59 58.78 58.78 53.55 177.30
4.00 30.29 36.08 65.47 65.47 65.47 80.90 -29.39 0.00 0.00 15.43 23.57 5.80 35.18 116.17 35.18 35.18 50.61 167.12
5.00 30.69 28.41 49.71 49.71 49.71 63.35 -21.31 0.00 0.00 13.63 27.42 -2.29 19.02 61.97 19.02 19.02 32.65 106.38
6.00 30.94 21.71 31.35 31.35 31.35 40.16 -9.63 0.00 0.00 8.82 28.13 -9.22 0.41 1.32 0.41 0.41 9.22 29.82
7.00 32.41 23.18 43.02 35.49 35.49 40.65 -19.84 -7.53 -7.53 -2.37 -5.50 -9.22 10.61 32.75 3.08 3.08 8.24 25.44
8.00 33.06 17.88 29.96 29.96 29.96 44.08 -12.08 0.00 0.00 14.12 47.14 -15.18 -3.10 -9.38 -3.10 -3.10 11.02 33.33
9.00 32.90 16.49 31.59 31.59 31.59 42.69 -15.10 0.00 0.00 11.10 35.14 -16.41 -1.31 -3.97 -1.31 -1.31 9.80 29.78

10.00 32.82 15.18 28.16 28.16 33.71 31.84 -12.98 0.00 5.55 3.67 13.04 -17.63 -4.65 -14.18 -4.65 0.90 -0.98 -2.99
slope 0.49 -9.04 -8.61 -8.75 -8.50 -7.58 average 24.13 99.67 115.94

Beta=2.4
Std Dev NO LLD 3.00 7.00 8.00 11.00 15.00 3.00 8.00 11.00 15.00 %improvement 3.00 7.00 7 %improvement 8.00 11.00 15.00 15 %improvement 

0.00 21.55 99.84 99.67 99.67 99.67 99.43 0.16 0.00 0.00 -0.24 -0.25 78.29 78.12 362.50 78.12 78.12 77.88 361.36
1.00 22.04 93.96 84.16 96.56 98.21 96.73 9.80 12.40 14.05 12.57 14.94 71.92 62.12 281.85 74.52 76.17 74.69 338.89
2.00 22.69 67.59 89.63 89.63 89.63 93.71 -22.04 0.00 0.00 4.08 4.55 44.90 66.94 294.96 66.94 66.94 71.02 312.95
3.00 22.61 36.98 68.33 68.33 68.33 73.55 -31.35 0.00 0.00 5.22 7.65 14.37 45.71 202.17 45.71 45.71 50.94 225.27
4.00 23.02 29.39 41.47 41.47 41.47 42.69 -12.08 0.00 0.00 1.22 2.95 6.37 18.45 80.14 18.45 18.45 19.67 85.46
5.00 24.24 20.73 42.78 42.78 42.78 42.12 -22.04 0.00 0.00 -0.65 -1.53 -3.51 18.53 76.43 18.53 18.53 17.88 73.74
6.00 24.24 14.29 25.06 25.06 25.06 42.29 -10.78 0.00 0.00 17.22 68.73 -9.96 0.82 3.37 0.82 0.82 18.04 74.41
7.00 23.84 14.20 27.43 27.43 27.43 35.59 -13.22 0.00 0.00 8.16 29.76 -9.63 3.59 15.07 3.59 3.59 11.76 49.32
8.00 37.80 14.12 25.71 25.71 25.71 38.29 -11.59 0.00 0.00 12.57 48.89 -23.67 -12.08 -31.97 -12.08 -12.08 0.49 1.30
9.00 37.47 11.67 22.04 22.04 22.04 25.63 -10.37 0.00 0.00 3.59 16.30 -25.80 -15.43 -41.18 -15.43 -15.43 -11.84 -31.59

10.00 38.04 11.92 21.14 21.14 23.10 26.53 -9.22 0.00 1.96 5.39 25.48 -26.12 -16.90 -44.42 -16.90 -14.94 -11.51 -30.26
slope 1.76 -9.00 -8.46 -8.92 -8.89 -8.10 average 21.77 108.99 132.80

Beta=2.5
Std Dev NO LLD 3.00 7.00 8.00 11.00 15.00 3.00 8.00 11.00 15.00 %improvement 3.00 7.00 7 %improvement 8.00 11.00 15.00 15 %improvement 

0.00 16.00 91.59 98.12 98.12 98.12 97.88 -6.53 0.00 0.00 -0.24 -0.25 75.59 82.12 513.27 82.12 82.12 81.88 511.73
1.00 16.73 65.96 75.33 75.33 82.38 86.03 -9.37 0.00 7.05 10.70 14.21 49.22 58.60 350.14 58.60 65.64 69.30 414.09
2.00 16.41 43.43 71.18 76.04 81.48 70.56 -27.76 4.86 10.29 -0.62 -0.87 27.02 54.78 333.83 59.64 65.07 54.16 330.05
3.00 16.98 36.41 61.55 61.55 61.55 64.33 -25.14 0.00 0.00 2.78 4.51 19.43 44.57 262.50 44.57 44.57 47.35 278.85
4.00 16.57 27.10 42.45 42.45 42.45 53.39 -15.35 0.00 0.00 10.94 25.77 10.53 25.88 156.16 25.88 25.88 36.82 222.17
5.00 17.06 14.53 36.82 36.82 36.82 50.78 -22.29 0.00 0.00 13.96 37.92 -2.53 19.76 115.79 19.76 19.76 33.71 197.61
6.00 28.98 11.18 28.90 28.90 28.90 39.59 -17.71 0.00 0.00 10.69 37.01 -17.80 -0.08 -0.28 -0.08 -0.08 10.61 36.62
7.00 17.06 11.02 16.65 16.65 16.65 28.73 -5.63 0.00 0.00 12.08 72.55 -6.04 -0.41 -2.39 -0.41 -0.41 11.67 68.42
8.00 17.55 10.20 20.08 20.08 20.08 20.57 -9.88 0.00 0.00 0.49 2.44 -7.35 2.53 14.42 2.53 2.53 3.02 17.21
9.00 17.80 8.65 15.18 15.18 15.18 19.51 -6.53 0.00 0.00 4.33 28.49 -9.14 -2.61 -14.68 -2.61 -2.61 1.71 9.63

10.00 19.27 8.00 11.92 11.92 25.39 19.43 -3.92 0.00 13.47 7.51 63.01 -11.27 -7.35 -38.14 -7.35 6.12 0.16 0.85
slope 0.33 -7.40 -8.44 -8.57 -8.36 -8.12 average 33.96 153.69 189.75
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Appendix G: Glossary of Terms

$ Path loss exponent (in the Log Normal Shadowing model of radio propagation)
F Standard Deviation of the normally distributed random path loss factor(in the Log

Normal Shadowing model of radio propagation)
AAV Amphibious Assault Vehicle
ACK Acknowledgment (packet)
ARG Amphibious Ready Group
AODV Ad-hoc On-demand Distance Vector (routing protocol)
CBR Constant Bit Rate
CTS Clear to Send
DSDV Destination Sequence Distance Vectoring
DSR Dynamic Source Routing
FTP File Transfer Protocol
IETF Internet Engineering Task Force
kbps Kilobits per second
LCAC Landing Craft Air Cushion
LL Link Layer
LLD Link Layer Detection
MAC Media Access Control
MANET Mobile Ad-Hoc networking
MEU Marine Expeditionary Unit
NIC Network Interface Card
NS2 Network Simulator (version 2.1b9)
OSI Open Systems Interconnection
RTS Request to Send
STOM Ship to Objective Maneuvers
TCP Transmission Control Protocol
TCL Tool Command Language
UDP User Datagram Protocol
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